PCSK 9, un nuevo blanco terapéutico para el control de la hipercolesterolemia

Roberto Antonio Fuentealba Leyton, Daniel Eduardo González

Resumen


La hipercolesterolemia es un importante factor de riesgo cardiovascular (ECV), que puede ser causada por factores genéticos, por llevar una vida sedentaria y malos hábitos alimenticios, teniendo como resultado elevados niveles de lípidos séricos, principalmente colesterol asociado a lipoproteínas de baja densidad (LDL-C). La dieta terapéutica, fármacos como ezetimiba y las estatinas son la principal estrategia utilizada para disminuir los niveles de LDL-C. Sin embargo, en un porcentaje de pacientes, estas medidas no logran una reducción de los niveles séricos LDL-C, principalmente por intolerancia a las estatinas o por causas genéticas de la hipercolesterolemia. La proproteína convertasa subtilisina/kexina tipo 9 (PCSK9), una serina proteasa recientemente caracterizada, ha surgido como un importante regulador del metabolismo del LDL-C, favoreciendo la degradación de su receptor (LDLR) en el lisosoma del hepatocito. Esto la convierte en un buen blanco terapéutico para controlar los niveles de LDL-C en pacientes hipercolesterolémicos, disminuyendo así el riesgo de desarrollar ECV. La estrategia en la que más se ha avanzado para controlar PCSK9 es a través de anticuerpos monoclonales anti-PCSK9. Se han realizado varios ensayos clínicos que muestran hasta el momento su efectividad en el control de LDL-C y bajo nivel de efectos adversos. Esta revisión muestra parte de esos estudios y los resultados que se han obtenido con el uso de este nuevo fármaco aún en desarrollo y que muestra un enorme potencial.


Palabras clave


Enfermedades Cardiovasculares; Proproteína Convertasa 9; anticuerpos; Receptores de LDL

Texto completo:

PDF

Referencias


Tiwari V, Khokhar M. Mechanism of action of anti-hypercholesterolemia drugs and their resistance. Eur J Pharmacol. 2014; (741):156-70. https:/doi.org/10.1016/j.ejphar.2014.07.048

Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, Bhala N, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376 (9753):1670-81. https:/doi.org/10.1016/S0140-6736 (10)61350-5

Pedro-Botet J, Pintó X. [An updated overview of the high intensity lipid lowering therapy in high cardiovascular risk patients]. Clin Investig Arterioscler. 2016;28 (1):19-30. https:/doi.org/10.1016/j.arteri.2015.10.006

Reiner Z, Catapano AL, De Backer G, Graham I, Taskinen MR, Wiklund O, et al. ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur Heart J. 2011;32(14):1769-818.

https:/doi.org/10.1093/eurheartj/ehr158

Grundy S, Cleeman J, Merz C, Brewer H, Clark L, Hunninghake D, et al. Implications of recent clinical trials for the national cholesterol education program adult treatment panel III guidelines. Arteriosclerosis Thrombosis and Vascular Biology. 2004;24(8):E149-E61. https:/doi.org/10.1161/01.ATV.0000139012.45265.e0

Cheng AY, Leiter LA. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Curr Opin Cardiol. 2006;21(4):400-4. https:/doi.org/10.1097/01.hco.0000231412.15049.fb

Zullig LL, Pathman J, Melnyk SD, Brown JN, Sanders LL, Koropchak C, et al. A protocol to evaluate the efficacy, perceptions, and cost of a cholesterol packaging approach to improve medication adherence. Contemp Clin Trials. 2014;39(1):106-12. https:/doi.org/10.1016/j.cct.2014.08.003

Díaz A, Murga N, Camafort-Babkowski M, López JC, Ruiz E, Ruiz-Baena J, et al. Therapeutic inertia in hypercholesterolaemia is associated with ischaemic events in primary care patients. A case-control study. Int J Clin Pract. 2014;68(8):1001-9. https:/doi.org/10.1111/ijcp.12419

Stein E. Management of dyslipidemia in the high-risk patient. American Heart Journal. 2002;144(6):S43-S50. https:/doi.org/10.1067/mhj.2002.130302

Stein EA. Managing dyslipidemia in the high-risk patient. Am J Cardiol.2002;89(5A):50C-7C. https:/doi.org/10.1016/S0002-9149(02)02229-4

Saxon DR, Eckel RH. Statin Intolerance: A Literature Review and Management Strategies. Prog Cardiovasc Dis. 2016;59(2):153-64. ttps:/doi.org/10.1016/j.pcad.2016.07.009

Vishwanath R, Hemphill LC. Familial hypercholesterolemia and estimation of US patients eligible for low-density lipoprotein apheresis after maximally tolerated lipid-lowering therapy. J Clin Lipidol. 2014;8(1):18-28. https:/doi.org/10.1016/j.jacl.2013.11.002

Pang J, Martin AC, Mori TA, Beilin LJ, Watts GF. Prevalence of Familial Hypercholesterolemia in Adolescents: Potential Value of Universal Screening? J Pediatr. 2016;170:315-6.

https:/doi.org/10.1016/j.jpeds.2015.11.019

Mata P, Alonso R, Ruiz A, Gonzalez-Juanatey JR, Badimón L, Díaz-Díaz JL, et al. Diagnóstico y tratamiento de la hipercolesterolemia familiar en Espa-a: documento de consenso. Aten Primaria. 2015;47(1):56-65. https:/doi.org/10.1016/j.aprim.2013.12.015

Watts GF, Lewis B, Sullivan DR. Familial hypercholesterolemia: a missed opportunity in preventive medicine. Nat Clin Pract Cardiovasc Med. 2007;4(8):404-5. https:/doi.org/10.1038/ncpcardio0941

Bingham B, Shen R, Kotnis S, Lo CF, Ozenberger BA, Ghosh N, et al. Proapoptotic effects of NARC 1 (= PCSK9), the gene encoding a novel serine proteinase. Cytometry A. 2006;69(11):1123-31. https:/doi.org/10.1002/cyto.a.20346

Seidah NG, Benjannet S, Wickham L, Marcinkiewicz J, Jasmin SB, Stifani S, et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci U S A. 2003;100(3):928-33. https:/doi.org/10.1073/pnas.0335507100

Cunningham D, Danley DE, Geoghegan KF, Griffor MC, Hawkins JL, Subashi TA, et al. Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nat Struct Mol Biol. 2007;14(5):413-9. https:/doi.org/10.1038/nsmb1235

Naureckiene S, Ma L, Sreekumar K, Purandare U, Lo CF, Huang Y, et al. Functional characterization of Narc 1, a novel proteinase related to proteinase K. Arch Biochem Biophys. 2003;420(1):55-67. https:/doi.org/10.1016/j.abb.2003.09.011

Burke AC, Dron JS, Hegele RA, Huff MW. PCSK9: Regulation and Target for Drug Development for Dyslipidemia. Annu Rev Pharmacol Toxicol. [Epub ahead of print]. https://doi.org/10.1146/annurev-pharmtox-010716-104944

Park SW, Moon YA, Horton JD. Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver. J Biol Chem. 2004;279(48):50630-8. https:/doi.org/10.1074/jbc.M410077200

Benjannet S, Rhainds D, Essalmani R, Mayne J, Wickham L, Jin W, et al. NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol. J Biol Chem. 2004;279(47):48865-75. https:/doi.org/10.1074/jbc.M409699200

Cao G, Qian YW, Kowala MC, Konrad RJ. Further LDL cholesterol lowering through targeting PCSK9 for coronary artery disease. Endocr Metab Immune Disord Drug Targets. 2008;8(4):238-43. https:/doi.org/10.2174/187153008786848286

Stancu C, Sima A. Statins: mechanism of action and effects. Journal of cellular and molecular medicine. 2001;5(4):378-87. https:/doi.org/10.1111/j.1582-4934.2001.tb00172

Tavori H, Christian D, Minnier J, Plubell D, Shapiro MD, Yeang C, et al. PCSK9 Association With Lipoprotein(a). Circ Res. 2016;119(1):29-35. https://doi.org/10.1161/CIRCRESAHA.116.308811

Vrashid S, Tavori H, Brown PE, Linton MF, He J, Giunzioni I, et al. Proprotein convertase subtilisin kexin type 9 promotes intestinal overproduction of triglyceride-rich apolipoprotein B lipoproteins through both low-density lipoprotein receptor-dependent and -independent mechanisms. Circulation. 2014;130(5):431-41.

https:/doi.org/10.1161/CIRCULATIONAHA.113.006720

Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet. 2005;37(2):161-5. https:/doi.org/10.1038/ng1509

Berge KE, Ose L, Leren TP. Missense mutations in the PCSK9 gene are associated with hypocholesterolemia and possibly increased response to statin therapy. Arterioscler Thromb Vasc Biol. 2006;26(5):1094-100. https:/doi.org/10.1161/01.ATV.0000204337.81286.1c

Hooper AJ, Marais AD, Tanyanyiwa DM, Burnett JR. The C679X mutation in PCSK9 is present and lowers blood cholesterol in a Southern African population. Atherosclerosis. 2007;193(2):445-8. https:/doi.org/10.1016/j.atherosclerosis.2006.08.039

Rashid S, Curtis DE, Garuti R, Anderson NN, Bashmakov Y, Ho YK, et al. Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc Natl Acad Sci U S A. 2005;102(15):5374-9.

https:/doi.org/10.1073/pnas.0501652102

Cohen JC, Boerwinkle E, Mosley TH, Jr., Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354(12):1264-72. https:/doi.org/10.1056/NEJMoa054013

Timms KM, Wagner S, Samuels ME, Forbey K, Goldfine H, Jammulapati S, et al. A mutation in PCSK9 causing autosomal-dominant hypercholesterolemia in a Utah pedigree. Hum Genet. 2004;114(4):349-53. https:/doi.org/10.1007/s00439-003-1071-9

Leren TP. Mutations in the PCSK9 gene in Norwegian subjects with autosomal dominant hypercholesterolemia. Clin Genet. 2004;65(5):419-22. https:/doi.org/10.1111/j.0009-9163.2004.0238.x

Naoumova RP, Tosi I, Patel D, Neuwirth C, Horswell SD, Marais AD, et al. Severe hypercholesterolemia in four British families with the D374Y mutation in the PCSK9 gene: long-term follow-up and treatment response. Arterioscler Thromb Vasc Biol. 2005;25(12):2654-60. https:/doi.org/10.1161/01.ATV.0000190668.94752.ab

Humphries SE, Whittall RA, Hubbart CS, Maplebeck S, Cooper JA, Soutar AK, et al. Genetic causes of familial hypercholesterolaemia in patients in the UK: relation to plasma lipid levels and coronary heart disease risk. J Med Genet. 2006;43(12):943-9. https:/doi.org/10.1136/jmg.2006.038356

Andersen LH, Andersen RL, Miserez AR. Familial defective apolipoprotein B-100: a tale of twin mutations. J Clin Lipidol. 2016;10(4):1050-1. https:/doi.org/10.1016/j.jacl.2016.04.007

Fitzgerald K, Frank-Kamenetsky M, Shulga-Morskaya S, Liebow A, Bettencourt BR, Sutherland JE, et al. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial. Lancet. 2014;383(9911):60-8. https:/doi.org/10.1016/S0140-6736(13)61914-5

Cuevas A, Farías MM, Alonso R. [New lipid lowering agents]. Rev Med Chil. 2014;142(7):880-8. https:/doi.org/10.4067/S0034-98872014000700008

Manniello M, Pisano M. Alirocumab (Praluent): First in the New Class of PCSK9 Inhibitors. P T. 2016;41(1):28-53.

Fala L. Repatha (Evolocumab): Second PCSK9 Inhibitor Approved by the FDA for Patients with Familial Hypercholesterolemia. Am Health Drug Benefits. 2016;(9) (Spec Feature):136-9.

Ridker PM, Amarenco P, Brunell R, Glynn RJ, Jukema JW, Kastelein JJ, et al. Evaluating bococizumab, a monoclonal antibody to PCSK9, on lipid levels and clinical events in broad patient groups with and without prior cardiovascular events: Rationale and design of the Studies of PCSK9 Inhibition and the Reduction of vascular Events (SPIRE) Lipid Lowering and SPIRE Cardiovascular Outcomes Trials. Am Heart J. 2016;178:135-44. https:/doi.org/10.1016/j.ahj.2016.05.010

Keating GM. Evolocumab: A Review in Hyperlipidemia. Am J Cardiovasc Drugs. 2016;16(1):67-78. https:/doi.org/10.1007/s40256-015-0153-0

Steinberg D, Witztum JL. Inhibition of PCSK9: a powerful weapon for achieving ideal LDL cholesterol levels. Proc Natl Acad Sci U S A. 2009;106(24):9546-7. https:/doi.org/10.1073/pnas.0904560106

Stein EA, Mellis S, Yancopoulos GD, Stahl N, Logan D, Smith WB, et al. Effect of a Monoclonal Antibody to PCSK9 on LDL Cholesterol. N Engl J Med 2012;366(12):1108-18. https:/doi.org/10.1056/NEJMoa1105803

Dias CS, Shaywitz AJ, Wasserman SM, Smith BP, Gao B, Stolman DS, et al. Effects of AMG 145 on low-density lipoprotein cholesterol levels: results from 2 randomized, double-blind, placebo-controlled, ascending-dose phase 1 studies in healthy volunteers and hypercholesterolemic subjects on statins. J Am Coll Cardiol. 2012;60(19):1888-98. https:/doi.org/10.1016/j.jacc.2012.08.986

McKenney JM, Koren MJ, Kereiakes DJ, Hanotin C, Ferrand AC, Stein EA. Safety and efficacy of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease, SAR236553/REGN727, in patients with primary hypercholesterolemia receiving ongoing stable atorvastatin therapy. J Am Coll Cardiol. 2012;59(25):2344-53. https:/doi.org/10.1016/j.jacc.2012.03.007

Roth EM, McKenney JM, Hanotin C, Asset G, Stein EA. Atorvastatin with or without an antibody to PCSK9 in primary hypercholesterolemia. N Engl J Med. 2012;367(20):1891-900. https:/doi.org/10.1056/NEJMoa1201832

Stein EA, Gipe D, Bergeron J, Gaudet D, Weiss R, Dufour R, et al. Effect of a monoclonal antibody to PCSK9, REGN727/SAR236553, to reduce low-density lipoprotein cholesterol in patients with heterozygous familial hypercholesterolaemia on stable statin dose with or without ezetimibe therapy: a phase 2 randomised controlled trial. Lancet. 2012;380(9836):29-36. https:/doi.org/10.1016/S0140-6736(12)60771-5

Sullivan D, Olsson AG, Scott R, Kim JB, Xue A, Gebski V, et al. Effect of a monoclonal antibody to PCSK9 on low-density lipoprotein cholesterol levels in statin-intolerant patients: the GAUSS randomized trial. JAMA. 2012;308(23):2497-506. https:/doi.org/10.1001/jama.2012.25790

Raal F, Scott R, Somaratne R, Bridges I, Li G, Wasserman SM, et al. Low-density lipoprotein cholesterol-lowering effects of AMG 145, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease in patients with heterozygous familial hypercholesterolemia: the Reduction of LDL-C with PCSK9 Inhibition in Heterozygous Familial Hypercholesterolemia Disorder (RUTHERFORD) randomized trial. Circulation. 2012;126(20):2408-17. https:/doi.org/10.1161/CIRCULATIONAHA.112.144055

Koren MJ, Scott R, Kim JB, Knusel B, Liu T, Lei L, et al. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 as monotherapy in patients with hypercholesterolaemia (MENDEL): a randomised, double-blind, placebo-controlled, phase 2 study. Lancet. 2012;380(9858):1995-2006. https:/doi.org/10.1016/S0140-6736(12)61771-1

Giugliano RP, Desai NR, Kohli P, Rogers WJ, Somaratne R, Huang F, et al. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 in combination with a statin in patients with hypercholesterolaemia (LAPLACE-TIMI 57): a randomised, placebo-controlled, dose-ranging, phase 2 study. Lancet. 2012;380(9858):2007-17. https:/doi.org/10.1016/S0140-6736(12)61770-X

Koren MJ, Giugliano RP, Raal FJ, Sullivan D, Bolognese M, Langslet G, et al. Efficacy and safety of longer-term administration of evolocumab (AMG 145) in patients with hypercholesterolemia: 52-week results from the Open-Label Study of Long-Term Evaluation Against LDL-C (OSLER) randomized trial. Circulation. 2014;129(2):234-43. https:/doi.org/10.1161/CIRCULATIONAHA.113.007012

Hirayama A, Honarpour N, Yoshida M, Yamashita S, Huang F, Wasserman SM, et al. Effects of evolocumab (AMG 145), a monoclonal antibody to PCSK9, in hypercholesterolemic, statin-treated Japanese patients at high cardiovascular risk--primary results from the phase 2 YUKAWA study. Circ J. 2014;78(5):1073-82.

https:/doi.org/10.1253/circj.CJ-14-0130

Robinson JG, Farnier M, Krempf M, Bergeron J, Luc G, Averna M, et al. Efficacy and Safety of Alirocumab in Reducing Lipids and Cardiovascular Events. N Engl J Med 2015;372(16):1489-99. https:/doi.org/10.1056/NEJMoa1501031

Kereiakes DJ, Robinson JG, Cannon CP, Lorenzato C, Pordy R, Chaudhari U, et al. Efficacy and safety of the proprotein convertase subtilisin/kexin type 9 inhibitor alirocumab among high cardiovascular risk patients on maximally tolerated statin therapy: The ODYSSEY COMBO I study. Am Heart J. 2015;169(6):906-15.e13.

https:/doi.org/10.1016/j.ahj.2015.03.004

Kastelein JJ, Robinson JG, Farnier M, Krempf M, Langslet G, Lorenzato C, et al. Efficacy and safety of alirocumab in patients with heterozygous familial hypercholesterolemia not adequately controlled with current lipid-lowering therapy: design and rationale of the ODYSSEY FH studies. Cardiovasc Drugs Ther. 2014;28(3):281-9.https:/doi.org/10.1007/s10557-014-6523-z

Kastelein JJ, Ginsberg HN, Langslet G, Hovingh GK, Ceska R, Dufour R, et al. ODYSSEY FH I and FH II: 78 week results with alirocumab treatment in 735 patients with heterozygous familial hypercholesterolaemia. Eur Heart J. 2015;36(43):2996-3003.

https:/doi.org/10.1093/eurheartj/ehv370

Ginsberg HN, Rader DJ, Raal FJ, Guyton JR, Baccara-Dinet MT, Lorenzato C, et al. Efficacy and Safety of Alirocumab in Patients with Heterozygous Familial Hypercholesterolemia and LDL-C of 160 mg/dl or Higher. Cardiovasc Drugs Ther. 2016;30(5):473-83.

https://doi.org/10.1007/s10557-016-6685-y

Schwartz GG, Bessac L, Berdan LG, Bhatt DL, Bittner V, Diaz R, et al. Effect of alirocumab, a monoclonal antibody to PCSK9, on long-term cardiovascular outcomes following acute coronary syndromes: rationale and design of the ODYSSEY outcomes trial. Am Heart J. 2014;168(5):682-9. https:/doi.org/10.1016/j.ahj.2014.07.028

Robinson JG, Nedergaard BS, Rogers WJ, Fialkow J, Neutel JM, Ramstad D, et al. Effect of evolocumab or ezetimibe added to moderate- or high-intensity statin therapy on LDL-C lowering in patients with hypercholesterolemia: the LAPLACE-2 randomized clinical trial. JAMA. 2014;311(18):1870-82. https:/doi.org/10.1001/jama.2014.4030

Blom DJ, Hala T, Bolognese M, Lillestol MJ, Toth PD, Burgess L, et al. A 52-Week Placebo-Controlled Trial of Evolocumab in Hyperlipidemia. N Engl J Med. 2014;370(19):1809-19.

https:/doi.org/10.1056/NEJMoa1316222

Raal FJ, Stein EA, Dufour R, Turner T, Civeira F, Burgess L, et al. PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;385(9965):331-40.

https:/doi.org/10.1016/S0140-6736(14)61374-X

Raal FJ, Honarpour N, Blom DJ, Hovingh GK, Xu F, Scott R, et al. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;385(9965):341-50.

https:/doi.org/10.1016/S0140-6736(14)61399-4

Koren MJ, Lundqvist P, Bolognese M, Neutel JM, Monsalvo ML, Yang J, et al. Anti-PCSK9 monotherapy for hypercholesterolemia: the MENDEL-2 randomized, controlled phase III clinical trial of evolocumab. J Am Coll Cardiol. 2014;63(23):2531-40. https:/doi.org/10.1016/j.jacc.2014.03.018

Dent R, Joshi R, Stephen Djedjos C, Legg J, Elliott M, Geller M, et al. Evolocumab lowers LDL-C safely and effectively when self-administered in the at-home setting. Springerplus. 2016;(5):300.

https:/doi.org/10.1186/s40064-016-1892-3

Sabatine MS, Giugliano RP, Wiviott SD, Raal FJ, Blom DJ, Robinson J, et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372(16):1500-9.

https:/doi.org/10.1056/NEJMoa1500858

ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT02207634, Evaluating PCSK9 Binding antiBody Influence oN coGnitive HeAlth in High cardiovascular Risk Subjects(EBBINGHAUS). [citado 22 de Octubre de 2016]. Disponible en: https://clinicaltrials.gov/ct2/show/NCT02207634

Kazi DS, Moran AE, Coxson PG, Penko J, Ollendorf DA, Pearson SD, et al. Cost-effectiveness of PCSK9 Inhibitor Therapy in Patients With Heterozygous Familial Hypercholesterolemia or Atherosclerotic Cardiovascular Disease. JAMA. 2016;316(7):743-53.

https:/doi.org/10.1001/jama.2016.11004

Moriarty PM, Parhofer KG, Babirak SP, Cornier MA, Duell PB, Hohenstein B, et al. Alirocumab in patients with heterozygous familial hypercholesterolaemia undergoing lipoprotein apheresis: the ODYSSEY ESCAPE trial. Eur Heart J. 2016;37(48):3588-95.

https://doi.org/10.1093/eurheartj/ehw388




DOI: http://dx.doi.org/10.20320/rfcsudes.v3i2.205

Métrica de artículo

Cargando métricas ...

Metrics powered by PLOS ALM


Copyright (c) 2016 Revista Facultad de Ciencias de la Salud UDES

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.

....................................................................................................................................................................................................

E-ISSN: 2422-1074